Friday, December 4, 2020

Staying Active : Google Blogs

 Friday, October 23, 2020

Rendering some Blooms

Google just announced that they will be deleting stored content which they deem 'inactive'.

It is not entirely clear (from a brief overview of the published policy information) how this relates to previously published blogs.   

As 'Blooms to Bars' contains documentation of a specific, short term project, it is unclear if the content presented here will fall victim to this change (deadline of June 1, 2021). 

In an effort to ensure that this documentation remains available, I will occasionally include some references to the continuing and related work still actively being undertaken here at the Wareham Forge. For those interested in the whole subject of bloomery iron, I would recommend taking a look at the extensive (and regularly updated) information presented :

The main Experimental Iron Smelting web site

The regular blog Hammered Out Bits

Saturday, July 7, 2012

Continuing to Objects...

Although the Bloom 2 Bar Project is officially completed, I thought I might continue the occasional posting here that would relate directly to the work of the project. 

I really wanted at least *something* new for the Goderich Celtic Festival, and Summerfolk the weekend following (Only three clear days between them, and there is an offload and re-pack in there too.)

The ideal would be to have something as completed objects that represented the three months I spent on the Bloom To Bar project:


Starting billets - bloom iron with spring steel cores
Rough forged blade blanks
I had prepared two billets I intended to lead to a very specific bladesmithing design. The top one is iron from Slag Pit 2 ( # 49 , November 2011 ) an the bottom from Black Rock (# 14, February 2006 ) In both cases the iron was deliberately used before much welding and folding had been done, specifically to allow cracks and irregular edges. I actually had gone a bit *too* far on the Slag Pit 2 iron, ending up with most all the flaws removed. For the second attempt, I was able to restrain my natural desire to forge in all the imperfections.

In the lower image, the two blanks are at different stages in completion.
The top blade has had the blade profile roughed out, and the first pass on forging the edge completed. The hilt is only vaguely shaped at this point however.
The bottom blade is complete in its forging. I had ground the rough forging to the basic lines I wanted for the finished knife. I find it easier to check for warps and wobbles if I do this first. Then the blade was forged again, first to correct any irregularities, second to refine the edge. (Forge thin - grind thinner). It is now ready to be surface ground, then the finished surface to be created on the belt sanders. Then heat treated. Then finish polishing. (The actual forging out of the knife shape is by far the fastest part of the whole process!)

Stay tuned for images of the completed knives...

(Edited from a longer post on Hammered Out Bits.) 

Thursday, May 24, 2012

Forging 'the custard'


 Edited from my ongoing on  Don Fogg's Bladesmithing Forum

Darrel so when you say 'weld in all the edges'... do you mean basically turning it on it's side and hammering down all the little bits at welding heat?   I'm assuming this is easier with lower carbon steel and iron.  On my very high carbon stuff.. those little bits just fall off.  
Scott

I would most certainly *not* hold my working methods up as the ideal!

That being said, I'm just coming off a two month research / learning project called 'Bloom to Bar'. So for while there all I was doing in the shop was working up some of my big pile of blooms (!)
So, that being said, take a look at :
'A Typical Work Session' (earlier on Bloom 2 Bar)

Jesus Hernandez also has a good visual tutorial over on his web site.


I have also seen on this forum some good advice given by Lee Sauder on this same topic.

Blooms have a structure that Lee describes as 'like a custard' - think of a lemon meringue, turned upside down.
The centre is a hard 'nut' of iron, often quite dense, with a spongy layer, often with a lot of air spaces and more slag included around the outside. As you might guess, a larger bloom might be cut apart, so more like a wedge of pie than the whole thing like you see on a small bloom.

(There is a variation in carbon content within a single bloom as well. Lets just leave that one. If anything, this carbon variation exaggerates the effects.)

Of course, the two different densities of metal move at different rates. That's one reason a press, squeezing in one direction does work more effectively than hand tools. The raw size of the mass also works against anyone attempting this process working alone. With excellent skill and co-ordination between a master hand and striker, of course the compaction process can be carried out by hand. (Watch Lee and Mike McCarthy work some time!)

So your first step is just pressing downwards at welding heat, collapsing the air spaces of the outside 'meringue' and forcing them on to the hard nut in the centre.
This does help on the edges however, which remain ragged. I have had some luck placing the then flat disk on its edge and pressing in / down. Its a tall thin shape, with soft edges, so the press tends to slide it sideways and I certainly find that process hard to control. Also the press works in a flat plane, and most often the bloom disk is round or oval.

Taken together, I had found it just as effective to hand hammer the edges in. I would place the disk flat on the anvil, then lean way over so I can fire blows almost dead horizontal from the far side of the anvil back towards the disk and my tong hand. This also allows you to both heat and forge on section of the bloom disk at a time.

Clear as mud?

Technically, the Bloom 2 Bar Project ended (at its most generous) May 15.
I will however, continue to cross post items from my regular blog (Hammered Out Bits) here, for topics directly related to the theme of bloom into bar - and beyond.

Monday, May 14, 2012

Papers, Publishing & Research Sources

Day 72

If judged by the budget included with my OAC Project proposal, the last actual 'grant day' would have been 43 days ending April 26. I decided to extend the project work to cover two last major elements. One was the iron smelt covered in the last couple of posts here. The second was an academic paper to be delivered at the International Congress on Medieval Studies at Kalamazoo Michigan. The conference ran from May 9 - 13, with my specific paper to be presented Thursday May 10.

I've referenced the paper itself in an earlier posting here. I had given a first draft version at Forward Into the Past at Laurier University on March 31. Obviously I consider the various public presentations of both research and practical method, plus ongoing communications like this blog an esencial part of the entire Bloom to Bar project.

The revised text of my paper 'An Iron Smelt in Vinland' will be eventually be published. Session organizers Ken Mondschein and Michael Cramer are working with Freelance Academy Press to collect a number of papers from the past 'If Those Bones Could Talk' sessions into a volume. 

Not to get too (!) side tracked, what I wanted to detail here was some other excellent reference sources for those seriously interested in bloomery iron smelting.

Method :

A Practical Treatise on the Smelting and Smithing of Bloomery Iron
Lee Sauder & Skip Williams
Historical Metallurgy, vol. 36 (2). 2002
A version will be available by hunting around on Lee's Iron Smelting site
 
If You Don't Get any IRON...
Darrell Markewitz
EXARC. vol. 2012-1
Available on line (with subscription)

Remember there are some links to instructional methods to your top right!

References :

Iron in Archaeology - The European Bloomery Smelters
Radomir Pleiner
80-86124-26-6
David Brown Books in the US is currently contacting the original publisher to see if they can acquire some copies of this volume. They are also attempting to get some of Pleiner's 'Iron in Archaeology, Early European Blacksmiths / 808612462-2'


Prehistoric & Medieval Direct Iron Smelting in Scandinavia and Europe 
Lars Christian Norbach
13 9788772887746
Available from ISD Distributing
The book costs $60 plus shipping

Iron and Steel in Ancient Times
Vagn F. Buchwald
8773043087
Available from the Danish Royal Academy
The book costs 60, 56 Euros plus 21,4 Euros (to Canada).
Contact Katrine Hassenkam Zoref

Sunday, May 6, 2012

'Production Smelt' - RESULTS

 (Day 65)


I would refer you back to yesterday's post for the details of the set up for this smelt.

Furnace in use
The first thing is don't do this alone.
You *can* run a successful smelt as a lone individual. It is however a massive amount of work.
- I spent a half day clearing out an old furnace and preparing the area and laying the base.
- Then a fairly long day preparing, mixing clay and building the furnace.
(Roasting ore was done separately, but the two batches there could have been undertaken during the work sessions above).
- Another half day gathering up the roasted ore, setting the tuyere and running a slow drying fire. I broke up 3/4 of the ore at the same time.

Smelt day, I broke charcoal while the first stages of pre-heat (with wood) was taking place.
I started that day at 8 am gathering tools and getting them out and arranging the work site.
The pre-heat was extended to allow time to break that charcoal (64 kg worth / 8 bags).
The main smelt sequence itself ran over 7 1/2 hours, from first charcoal fill to start of the extraction. In the end I decided to use all of the 'Jamestown Brown' ore that I had roasted and crushed. The total ore added was just under 42 kg. The total charcoal consumed was 55 kg (7.5 full 8kg bags, before breaking). I had a real hard time getting this bloom free. I ended up having to break way 2/3 of the slag mass by chiselling it off in small pieces. I really have no clear concept of how long this took, but working down inside the hot furnace was absolutely exhausting. My guess is that I was at it at least a half hour.

The total smelting session took 13 hours!


Slag mass, the furnace just opened.
So by the time I pulled the bloom free, the bloom had cooled considerably. I did try to work over the surface with a 5 lb hand sledge. This did knock some of the clinging slag 'mother' free, but really was not effective in compacting the metal itself. I tried a fast weight measurement, but frankly I think the reading was not all that accurate. (What I recorded was 12.27 kg). Frankly, this is a much larger bloom than I normally make.

Hot bloom mass - after hand hammering
I rushed the bloom back from the rear yard into the workshop. I had started my two burner gas forge before I started the extraction, but there was no way the mass would fit. Although the bloom was closer to a red heat at this point, I quickly started the hydraulic press. I made a partial compaction, but it was obvious that the bloom was far too cold, and several larger pieces broke free. I swapped in the cutting head and made a cut from both sides, most the way through. At this point I might have been able to get the individual 'half' sections into the gas forge, but frankly, I was way past too beat to work.

Main bloom, cold and after sectioning
This morning, I was able to pull the scored bloom off the floor, and sweep with a magnet to recover any fragments.
The main bloom itself now weighs a quite respectable 8.83 kg.
I recovered another 1.46 kg of fragments. Two pieces are a good size (at 501 and 324 gms) and look solid enough that I should be able to work them down to smaller bars.
The overall yield (using the 10.3 kg total recovered) comes to roughly 24 %.

The furnace itself, despite all the pounding and prodding, was found to be in remarkably great shape the next morning. There is one very small crack right near the top edge, but otherwise the shaft is in perfect shape.
The copper tuyere might have melted just a tiny bit. I'll have to measure it to be sure. The wall around the tuyere did errode a slight amount, but it does not look more than a centimetre or two.
After a small amount of cleaning up, I'm certain it will be quickly ready for another use (Thanks Lee!)


(very) Tired but happy
(but let's get more of the gang here *next* time I decide to try this...)

This post a duplicate from Hammered Out Bits

Saturday, May 5, 2012

A Production (?) Smelt

(Day 64)

Although technically I am past the end date for the OAC Project Grant, one of the things I wanted to include was building a more production type furnace and running a test smelt.

As I had detailed in an earlier post, this furnace would include a number of features 'borrowed' from the furnaces that Lee Sauder has been using recently. (This a nice switch, as had focused primarily on clay construction earlier in my development.)
 The main features of this new furnace are:
use of a copper tuyere 
base area built of fire brick
metal sheathing over the shaft
use of sand / horse manure / clay mix



Layout with dimensionsBefore drying fire.
You can see the layout includes a very deep base area, a total of 28 cm from the centre of the tuyere tip to the hard base. When set up for a smelt, the lower 12 cm or so will be filled with charcoal fines. The furnace also has a much larger tap arch. Taken together, this should allow for possible bottom extraction of the final bloom.

The furnace is set on the upper level of the normal smelting area at Wareham. This does make it a bit tall for top extraction (top of the furnace is chest high on me). The advantage is that the bottom of the furnace is set about 18 inches off the ground, making it easier to work tapping or slag bowl modification.

Furnace interior, showing tuyere tip
This furnace will use the new forged copper tuyere (detailed here). The interior view above was taken before the drying fire was started. You can see the usual insert tuyere position, 5 cm proud of the interior wall and set to 23 degrees down angle. The flat brick seen the bottom is supporting the tap arch at this point (the clay was still damp).

 
Ore Roasting
Earlier in this week I had spent part of two afternoons roasting up ore. I still have a quantity of 'Jamestown Brown', a water deposited ore from that location in Virginia. A number of years back, a group of us were invited to pick some of this material that lay in a large sand bank at the rear of a rural blacksmith/gunsmith's property. Sheldon Browder & Steve Mankowski (from Colonial Williamsburg) have used this ore repeatedly since with good results.


Late yesterday afternoon and early evening I started preparing the smelting area. I started a gentle drying fire using small wood splits inside the furnace. That process continued for several hours. At the same time I sorted out the work area for today's smelt. As well I continued crushing the ore I had roasted over the last week. The ore does seem a bit 'sandy' to me, with a visible variation in iron concentration and form. At worst this may mean some extra slag tapping, but the new furnace layout should provide for this.



Its looking like I may be running this smelt today single handed. Although I have done this (once!) before, I'm expecting a hard day. Lets hope nothing goes seriously wrong with this new furnace.


Stay tuned...

This post duplicated from Hammered Out Bits

Sunday, April 29, 2012

Inspiration to Modification

Day 62


Remember these?



F- 'Split Fire Riser'
R- 'Solar Riser LH4'
Thomas Patti - 1943
(Sorry - its a horrible image)

When I saw these glass objects by Patti at the Corning Glass Museum, I immediately thought of how the hydraulic press could alter the shape of a block of steel in a similar way.

So this is what became of the concept (Very, very, first rendition)



The left corner is the result of the very first experimenting with the press day I did with David Robertson. (David had consulted heavily with me on the construction of the press before this OAC project begain.)
The tool was originally produced for potential use with my small air hammer. I never use secondary tools that much with the air hammer, primarily because of the small die surface (as repeatedly mentioned, only 1 1/2 " wide by 4 " long). Although it is true that lack of practice is part of that problem! It has a slightly tapered shaft forged from 1 1/4 ' round stock, so the working end is roughly 1 inch diameter. The shaft length is roughly 3 inches, made of mild steel. The handle is piece of flat stock, wrapped around and MIG welded on the top surface, then ground flush.

The starting block was a piece of 1/2 thick by  roughly 2 inch square.
The resulting shape was made by setting the tool on the orange hot block, then driving it downwards. I used the full power of the press (to 3000 psi), primarily to see how far through I could push the tool.
As you can see, what happened is that the tool 'bottomed out' at about 3/16 thickness. At that point the metal below the tool had most of its heat pulled off through contact with the tool and bed of the press. The increasing pressure then simply started to bend the shaft itself.


Obviously not the way to go. Interesting potential however.


The second test , at the upper right, (done April 17) started with modifying a tool. This small (cheap) ball peen hammer had been used for a different impression test initially. Result was that the pressure collapsed the walls of the eye around the original wooden handle. First I used a drift to re-open the eye and straighten the bent head. The hammer face side was forged down to approximately the same shape and size as a standard 3/4 inch taper base candle.  Last I forged down a piece of solid 5/8 " round to fit, then drove that into the eye hot to seat it.
The starting block this time was a piece of 1 inch square, about three inches long.
First the hot block was collapsed downwards into itself. With a second heat, the tool was pressed down into the block.
One unexpected result was that the ball top end actually left an impression into the mild steel top flat plate die set in the press. Not good. 



But the finished object? Closer, but still not quite.


Both tool and object prototyping continues...





February 15 - May 15, 2012 : Supported by a Crafts Projects - Creation and Development Grant

COPYRIGHT NOTICE - All posted text and images @ Darrell Markewitz.
No duplication, in whole or in part, is permitted without the author's expressed written permission.
For a detailed copyright statement : go HERE